Telemedicine and Digital Health

Gerhard Hindricks

ESC Digital Health Committee

Presenter Disclosure Information

Gerhard Hindricks/Department of Electrophysiology has received scientific grants and research & development grants through the University Leipzig / Heart Center from the German Innovation Fund, and the European Commission.

No personal relations to disclose.

Support European Values

The European Society of Cardiology

- Unites more than 110.000 cardiologists
- from 58 National Societies
- Promotes science and education
- Innovations and technologies
- Promotes patient values and patient engagement
- Hosts the largest annual cardiovascular congress globally
- Journal family around the European Heart Journal
- Develops the globally leading guidelines for CV disease
- ... is proud to be guest here at ESA
- Our Mission: Reduce the Burden of Cardiovascular Disease

The burden of cardiovascular disease

Source: WHO 2017 Lancet 2018; 392: 1072–88

Global health care budget projections

Global health care budget projections

Digital technologies to support CV diagnostics and therapies

Remote communication cardiac implants

Wearables and remote communication tools

Wearables and remote communication tools

Sensors	Measurements
Accelerometer Barometer GPS	Activity (e.g., step/stair counts, exercise), estimated calories burned
PPG	HR, HRR, HRV, cuff-less BP, SaO2, cardiac output, stroke volume, pulse- based rhythm detection, sleep and its stages
ECG	Single- and multi-lead ECG, continuous or as- needed monitoring, interval measurements (e.g., QTc), arrhythmia detection, electrolyte abnormalities
Oscillometer	Wrist cuff BP
Biochemical sensors	Invasive: blood glucose and electrolyte monitoring
	Non-invasive: sweat and saliva electrolytes and hydration status

Table 4 Key factors for implementation

- Use regulatory-approved devices and algorithms (updated database of approved systems. The EUDAMED database is under construction, https://ec.europa.eu/tools/eudamed/ #/screen/home)
- Well documented, easily navigated, standardized process for reimbursement
- Standardized hospital policies
- Reliable data privacy

all personnel

- Process for regular updates
- Common platform with systems for integration of multiple devices
- Include regular training and education on digital technology for
- Provide training for patients with devices who are enrolled in monitoring programmes
- Dedicated in house or contracted digital health personnel
- Ensure medico-legal standards are in place

HERZZENTRUM LEIPZIG

Diese Maßnahme wird mitfinanziert mit Steuermitteln auf Grundlage des vom Sächsischen Landtag beschlossenen Haushaltes

Convolutional neural network for detection of atrial fibrillation

Performance of a neural network for ECG diagnosis

Hughes JW et al.; JAMA Cardiology 2021

Convolutional neural network for detection of atrial fibrillation

Self-diagnostic Medical Devices Market: Heart Diseases Segment is Likely to Expand at a High Growth Rate During the Forecast Period

https://www.biospace.com/article/self-diagnostic-medical-devices-market-heart-diseases-segment-is-likely-to-expand-at-a-high-growth-rate-during-the-forecast-period/

- · Precise patient identification
- Non-contact assessment of rhythm and rate
- · Insights into mental health
 - real time emotion recognition
- · Pain perception
- · Continuous facial monitoring
 - during interventions
 - ICU / CCU
- Connection of facial data with
 - hemodynamics
 - medical therapy
 - robotics
- Support of medical staff (e.g. ADDW)
 (Advanced Driver Distraction Warning)

- Precise patient identification
- Non-contact assessment of rhythm and rate
- Insights into mental health
 - real time emotion recognition
- Pain perception
- · Continuous facial monitoring
 - during interventions
 - ICU / CCU
- Connection of facial data with
 - hemodynamics
 - medical therapy
 - robotics
- Support of medical staff (e.g. ADDW)
 (Advanced Driver Distraction Warning)

- · Precise patient identification
- Non-contact assessment of rhythm and rate
- Insights into mental health
 - real time emotion recognition
- Pain perception
- Continuous facial monitoring
 - during interventions
 - ICU / CCU
- Connection of facial data with
 - hemodynamics
 - medical therapy
 - robotics
- Support of medical staff (e.g. ADDW)
 (Advanced Driver Distraction Warning)

- · Precise patient identification
- Non-contact assessment of rhythm and rate
- · Insights into mental health
 - real time emotion recognition
- · Pain perception
- · Continuous facial monitoring
 - during interventions
 - ICU / CCU
- Connection of facial data with
 - hemodynamics
 - medical therapy
 - robotics
- Support of medical staff (e.g. ADDW)
 (Advanced Driver Distraction Warning)

Detection of heart failure using speech signals

The automatic detection of heart failure using speech signals

M. Kiran Reddy*,^a, Pyry Helkkula^b, Y. Madhu Keerthana^c, Kasimir Kaitue^a, Mikko Minkkinen^d, Heli Tolppanen^d, Tuomo Nieminen^d, Paavo Alku^a

acoustic speech signal and corresponding glottal flow waveform, healthy (a/b) HF (c/d)

^a Department of Signal Processing and Acoustics, Aalto University, Aalto 00076, Finland

b Institute of Molecular Medicine, University of Helsinki, Helsinki 00290, Finland

^c Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India

d Heart and Lung Center, Helsinki University Hospital, Helsinki 00290, Finland

Digital technologies to support CV diagnostics and therapies

- 40 pts. With decompensated HF
- 5 sentences
- 1-3 languages
- HearO speech processing application
- 5 distinct speech measures,
 - each a distinct time,
 - frequency resolution,
 - linear versus perceptual (ear)
 model

Digital, structured, machine readable clinical guidelines

Digital technologies to support CV diagnostics and therapies **WESC**

- Goal: Al-driven patient information platform to improve patient engagement in AF
- Setting: AF ablation
- 1. Find/create medium
- 2. Define message (chatGPT)
- 3. Fuse medium and text

Better access to medical care: potential solutions

- A medical system with tree components
- Digital products (apps) for self-assessment
- Digital centers / hospitals for consultation
- Compact health care diagnostics and treatment centers

Digital health solutions: 3 steps

Apps:

Digital healthcare services from lifestyle, prevention, smart routing, treatment to chronic disease management

Step 1: self assessment using pre-defined apps For common disease

Digital Hospital:

Our best quality
telemedical
consultation services
across all medical areas

Step 2: contact the digital hospital, present symptoms and consult physician

Step 3: if necessary the app will guide patients to Cubes for further diagnostics and treatment

Digital health solutions

Digital transformation – opportunities and challenges

- Digital technologies will be disruptive in health care
- All elements of traditional health care will be substantially affected by DT
- New spaces for health care will develop and substantially reset the health care sector
- This development will happen soon and substantially affect the ESC
- Cardiovascular medicine will be a leading catalyser for implementation of DT
- ESC will have a specific role with huge opportunities in this emerging field
 - cardiovascular medicine prevention, diagnostics, treatment
 - science and education
 - regulation and advocacy